A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
نویسندگان
چکیده
This study developed a novel model, HGA-SVR, for type of kernel function and kernel parameter value optimization in support vector regression (SVR), which is then applied to forecast the maximum electrical daily load. A novel hybrid genetic algorithm (HGA) was adapted to search for the optimal type of kernel function and kernel parameter values of SVR to increase the accuracy of SVR. The proposed model was tested at an electricity load forecasting competition announced on the EUNITE network. The results showed that the new HGA-SVR model outperforms the previous models. Specifically, the new HGASVR model can successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in electricity load forecasting. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.
منابع مشابه
A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملPrediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
متن کاملOptimization of Support Vector Regression using Genetic Algorithm and Particle Swarm Optimization for Rainfall Prediction in Dry Season
Support Vector Regression (SVR) is Support Vector Machine (SVM) is used for regression case. Regression method is one of prediction season method has been commonly used. SVR process requires kernel functions to transform the non-linear inputs into a high dimensional feature space. This research was conducted to predict rainfall in the dry season at 15 weather stations in Indramayu district. The...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009